Skip to main content

Requirements for an Anyscale container image

This page specifies the requirements for creating a standardized image used in Anyscale infrastructure. It details the system requirements, essential software packages, and the Python libraries needed to ensure compatibility and performance on Ray cluster launched by Anyscale.

System requirements

  • Base image: Use ubuntu:22.04 as image foundation, ensuring a stable and widely supported Linux environment.
  • User configuration: Include ray user with user ID 1000 and group ID 100. Also, ray needs to able to run sudo without a password.
  • Working directory: Set WORKDIR to /home/ray, which designates the primary directory for user operations and application execution. Ensure that the ray user has read and write permissions to this directory.
  • Home directory: Set /home/ray as HOME, centralizing user configurations and runtime files.
  • Image platform: Use amd64 platform (linux/amd64/v4).

System

  • sudo
  • python
  • bash
  • openssh-server
  • openssh-client
  • rsync
  • zip
  • unzip
  • git
  • gdb
  • curl

Python

  • ray>=2.7
  • anyscale
  • packaging
  • boto3
  • google
  • google-cloud-storage
  • jupyterlab

Anyscale reserved resources

Filesystem paths:

  • /etc/anyscale
  • /opt/anyscale
  • /tmp/anyscale
  • /tmp/ray
  • /mnt/

Network ports:

80, 443, 1010, 1012, 2222, 5555, 5903, 6379, 6822, 6823, 6824, 6826, 7878, 8000 ,8076, 8085, 8201, 8265, 8266, 8686, 8687, 8912, 8999, 9090, 9092, 9100, 9478 ,9479, 9480, 9481, 9482

Workspace dependencies

If you intend to run the image on workspaces, the following additional dependencies are required:

  • Persistent bash history: Add PROMPT_COMMAND="history -a" to /home/ray/.bashrc to ensure that Ray saves the bash history after each command.
  • Source .workspacerc: source ~/.workspacerc if it exists.

Example Dockerfile

The following is an example Dockerfile that defines a custom container image compatible with Anyscale:

# syntax=docker/dockerfile:1.3-labs

# Specify the Ray version and Python version to use. You can override this setting at build time.
# Note that the ubuntu:22.04 base image is always Python 3.10.
# You're responsible for installing other versions of Python based on your application requirements.
ARG RAY_VERSION=2.39.0
ARG PYTHON_MAJOR_VERSION=3
ARG PYTHON_MINOR_VERSION=10

# Define the Anyscale image as a named build stage.
ARG ANYSCALE_RAY_IMAGE=anyscale/ray:$RAY_VERSION-py$PYTHON_MAJOR_VERSION$PYTHON_MINOR_VERSION
FROM $ANYSCALE_RAY_IMAGE as anyscale-ray

# Base image.
FROM ubuntu:22.04 as base

# Redeclare the RAY_VERSION and PYTHON_VERSION variables to make them available in the base image.
ARG RAY_VERSION
ARG PYTHON_MAJOR_VERSION
ARG PYTHON_MINOR_VERSION

ENV DEBIAN_FRONTEND=noninteractive

# Install basic dependencies and setup `ray` user with sudoer permissions.
# Note that `ray` user should be (uid: 1000, gid: 100) to work with shared file
# systems.
# Add gdb since Ray dashboard uses `memray attach`, which requires gdb.
RUN <<EOF
#!/bin/bash
set -euxo pipefail

apt-get update -y
apt-get install -y --no-install-recommends sudo tzdata openssh-client openssh-server rsync zip unzip git gdb curl
# Install Python -- you can replace this with whatever Python installation method
# you want (i.e., conda, etc...), as long as `python` is on PATH. At runtime
# Anyscale sources `/home/ray/.bashrc` in case you modify PATH there. This example uses
# virtualenv
apt-get install -y python3-venv

apt-get clean
rm -rf /var/lib/apt/lists/*

# Workaround for https://bugs.launchpad.net/ubuntu/+source/openssh/+bug/45234
mkdir -p /var/run/sshd

useradd -ms /bin/bash -d /home/ray ray --uid 1000 --gid 100
usermod -aG sudo ray
echo 'ray ALL=NOPASSWD: ALL' >> /etc/sudoers
EOF

# Switch to `ray` user.
USER ray
ENV HOME=/home/ray
ENV PATH=/home/ray/virtualenv/bin:$PATH

RUN <<EOF
#!/bin/bash
# Run as user `ray` from here.
su --login ray
python3 -m venv --system-site-packages /home/ray/virtualenv
export PATH=/home/ray/virtualenv/bin:$PATH

# You only need jupyterlab if you want to access Jupyter notebooks from the Anyscale workspace web UI.
# Note that this only installs `ray[default]` to minimize the amount of dependencies.
# You can add extra libraries such as Ray Tune with `ray[default,tune]` or all of them with `ray[all]`.
# See the Ray docs for more info: https://docs.ray.io/en/latest/ray-overview/installation.html
pip install --no-cache-dir anyscale jupyterlab ray[default]==${RAY_VERSION}

# If you want to run your cluster on Amazon Web Services, uncomment out the following lines:
# curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
# unzip awscliv2.zip && sudo ./aws/install && rm awscliv2.zip

# If you want to run your cluster on Google Cloud Platform, uncomment the following line:
# pip install --no-cache-dir google google-cloud-storage

# Start of workspace dependencies: this section is only needed if you want your image to run on workspaces.

# This flushes bash history after each command, so that workspaces can persist it.
echo 'PROMPT_COMMAND="history -a"' >> /home/ray/.bashrc

# If the workspacerc exists, load it.
echo '[ -e ~/.workspacerc ] && source ~/.workspacerc' >> /home/ray/.bashrc

EOF

# Copying RayTurbo files and requirements.
COPY --from=anyscale-ray /opt/anyscale /opt/anyscale
RUN pip install -r /opt/anyscale/runtime-requirements.txt

# Environment setup for RayTurbo.
ENV ANYSCALE_RAY_SITE_PKG_DIR=/home/ray/virtualenv/lib/python${PYTHON_MAJOR_VERSION}.${PYTHON_MINOR_VERSION}/site-packages