Skip to main content

(Preview) Fine-tuning and serving with the Anyscale Models SDK/CLI

This guide walks through a new preview feature: The Anyscale LLM Models SDK/CLI. This enables programmatically fine-tuning and serving custom models. Review the basic fine-tuning and serving examples for this guide.

note

This example requires llmforge>=0.5.7 and anyscale>= 0.24.65

Example: Serverless fine-tuning and serving a custom model on Anyscale

In this example, we fine-tune a Llama 3 8B model on a math word problem dataset using an Anyscale Job. Then, we serve the custom model on Anyscale using rayllm.

Step 1: Fine-tuning

Assume the following directory structure:

├── configs
│ ├── llama-3-8b.yaml
│ └── zero_3.json

Here's an example fine-tuning config llama-3-8b.yaml:

model_id: meta-llama/Meta-Llama-3-8B-Instruct
train_path: s3://air-example-data/gms8k/train.jsonl
valid_path: s3://air-example-data/gms8k/valid.jsonl
num_devices: 4
num_epochs: 2
context_length: 512
worker_resources:
accelerator_type:A10G: 0.001
deepspeed:
config_path: configs/zero_3.json
generation_config:
prompt_format:
system: "{instruction}"
user: "{instruction}"
assistant: "{instruction} </s>"
trailing_assistant: ""
bos: ""
stopping_sequences: ["</s>"]
lora_config:
r: 8
lora_alpha: 16
lora_dropout: 0.05
target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- up_proj
- down_proj
- embed_tokens
- lm_head
modules_to_save: []
tip

llmforge supports any HuggingFace model, so you can use their smaller test models to quickly iterate and assess new configurations or datasets.

You can launch the fine-tuning run as an Anyscale Job and wait until the job is done:

import time

import anyscale
from anyscale.job.models import JobConfig, JobState

job_id: str = anyscale.job.submit(
JobConfig(
name="llmforge-fine-tuning-job",
entrypoint="llmforge anyscale finetune config.yaml",
working_dir=".",
image_uri="localhost:5555/anyscale/llm-forge:0.5.7"
),
)
# Wait until job succeeds, with a 5 hour timeout for the wait operation. See the API reference for more details: https://docs.anyscale.com/reference/job-api
anyscale.job.wait(id=job_id, timeout_s=18000)
print(f"Job {job_id} succeeded!")

The above job runs in the default cloud and the default project. For the full set of config parameters, see the Anyscale Job API reference.

Once the job is complete, retrieve the model info with anyscale.llm.model.get:

model_info = anyscale.llm.model.get(job_id=job_id).to_dict()
print(model_info)

This is what the model metadata looks like:

{'base_model_id': 'meta-llama/Meta-Llama-3-8B-Instruct',
'cloud_id': 'cld_123',
'created_at': datetime.datetime(2024, 8, 26, 21, 21, 54, 213160, tzinfo=tzlocal()),
'creator_id': 'usr_123',
'ft_type': 'LORA',
'generation_config': {'prompt_format': {'add_system_tags_even_if_message_is_empty': False,
'assistant': '{instruction} </s>',
'bos': '<s>',
'default_system_message': '',
'strip_whitespace': True,
'system': '{instruction}',
'system_in_last_user': False,
'system_in_user': False,
'trailing_assistant': '',
'user': '{instruction}'},
'stopping_sequences': ['</s>']},
'id': 'meta-llama/Meta-Llama-3-8B-Instruct:usern:deyoq',
'job_id': 'prodjob_123',
'project_id': 'prj_123',
'storage_uri': 's3://org_123/cld_123/artifact_storage/lora_fine_tuning/meta-llama/Meta-Llama-3-8B-Instruct:usern:deyoq',
'workspace_id': None}

Some of the important fields are id (model tag), base_model_id (base model ID used for fine-tuning), ft_type (fine-tuning type), storage_uri (storage path for the best checkpoint) and generation_config (includes chat-templating parameters and stopping sequences for inference).

With LoRA training, Anyscale forwards all LoRA weights to a shared location for convenience. $ANYSCALE_ARTIFACT_STORAGE/lora_fine_tuning is the common storage path used for all LoRA checkpoints (corresponds to the dynamic_lora_loading_path for serving) . Note that the models SDK also provides the same path in storage_uri, with the structure $ANYSCALE_ARTIFACT_STORAGE/lora_fine_tuning/meta-llama/Meta-Llama-3-8B-Instruct:usern:deyoq.

If you already have the model id either through the "Models" page on the platform or the fine-tuning logs, and want to know more about the model, you can use the llm.model.get method again but specify the id:

model_info = anyscale.llm.model.get(model_id="meta-llama/Meta-Llama-3-8B-Instruct:usern:deyoq")
note

The artifact storage path is specific to your Anyscale cloud and organization. This is available in a workspace or a job environment as the $ANYSCALE_ARTIFACT_STORAGE environment variable. For more on the same, see the storage guide.

tip

To use the Anyscale CLI, you can use anyscale llm model get --job-id JOB_ID or anyscale llm model --model-id MODEL_ID.

Step 2: Serving

We can now serve the fine-tuned model on the Anyscale Platform using rayllm.

To get started quickly, you can auto-generate the serve config and the model config using this template. Make sure to update the model_loading_config, generation_config, max_request_content_length and in this case, lora_config, using the model_info data.

assets

Note that the CLI utility prompts you for the LoRA weights storage URI. This URI is the parent directory common to all LoRA checkpoints you wish to serve. You can also retrieve the same URI with:

from pathlib import Path
dynamic_lora_loading_path = str(Path(model_info.storage_uri).parent.parent) # get parent directory for the LoRA checkpoint

And then populate the serve config appropriately. You can now launch a service through Anyscale service SDK or CLI:

service = anyscale.service.deploy(config_file="./serve_TIMESTAMP.yaml")

or

anyscale service  deploy -f ./serve_TIMESTAMP.yaml
note

It's good to use the workspace template once to generate the RayLLM configs for your model. For full-parameter fine-tuning, the same config is applicable for different models (you can change the generation_config as needed based on model_info), with a similar story for LoRA.

If you've had a previous LoRA deployment for the base model (say meta-llama/Meta-Llama-3-8B-Instruct), then all you need is the id to query the new LoRA checkpoint.

model_info = anyscale.llm.model.get(job_id=job_id)
finetuned_model_id = model_info.id
# Use the the new model ID in your existing client code.
# Make sure to use the ENDPOINT_URL and ENDPOINT_API_KEY for your Anyscale Service.
client = openai.OpenAI(base_url=ENDPOINT_URL, api_key=ENDPOINT_API_KEY)
client.chat.completions.create(
model = finetuned_model_id,
messages = [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"}],
stream = True
)

For more details, see the LLM Model API reference.