LLMForge releases
LLMForge version | Image URI | Ray version | Python version | Changelog |
---|---|---|---|---|
0.5.9 | localhost:5555/anyscale/llm-forge:0.5.9 | 2.40.0 | 3.11.10 | Link |
0.5.8 | localhost:5555/anyscale/llm-forge:0.5.8 | 2.38.0 | 3.11.10 | Link |
0.5.7 | localhost:5555/anyscale/llm-forge:0.5.7 | 2.35.0 | 3.11.9 | Link |
0.5.6 | localhost:5555/anyscale/llm-forge:0.5.6 | 2.35.0 | 3.11.9 | Link |
0.5.5 | localhost:5555/anyscale/llm-forge:0.5.5 | 2.32.0 | 3.11.9 | Link |
0.5.4 | localhost:5555/anyscale/llm-forge:0.5.4 | 2.32.0 | 3.11.9 | - |
0.5.3 | localhost:5555/anyscale/llm-forge:0.5.3 | 2.32.0 | 3.11.9 | - |
0.5.2 | localhost:5555/anyscale/llm-forge:0.5.2 | 2.32.0 | 3.11.9 | - |
0.5.1 | localhost:5555/anyscale/llm-forge:0.5.1 | 2.31.0 | 3.11.9 | - |
0.5.0.1 | localhost:5555/anyscale/llm-forge:0.5.0.1-ngmM6BdcEdhWo0nvedP7janPLKS9Cdz2 | 2.24.0 | 3.10.14 | - |
Changelog
Version 0.5.9
- Added experimental support for vision-language training, which supports Pixtral architecture
- Added new
optimizer_config
option for custom Hugging Face optimizer configurations; API Reference - Upgraded rayturbo to 2.40
- General improvements and bug fixes
Version 0.5.8
- Added new
checkpoint_and_evaluation_frequency
for customizing checkpointing and evaluation cadence.- Resources: API Reference | Example usage
- Upgraded rayturbo to 2.38, which comes with many improvements in Ray Data
- Added support for
torch.compile
; API Reference - General improvements in data preprocessing and logging
⚠️ Deprecation notice ⚠️
- The parameters
checkpoint_every_n_epochs
andmax_num_checkpoints
are deprecated and will be removed in version 0.6. Usecheckpoint_and_evaluation_frequency
instead.
Version 0.5.7
- Added support for Llama 3.1 and 3.2 with default configurations
- Improved checkpoint discovery for serving;
storage_uri
returned byanyscale.llm.model.get
now contains forwarded checkpoint for LoRA. User guide - Renamed
no_gradient_checkpoint
togradient_checkpointing
- General improvements in configuration management and stability
⚠️ Deprecation notice ⚠️
- The
no_gradient_checkpoint
parameter is now deprecated and will be removed in version 0.6. Usegradient_checkpointing
instead.
Version 0.5.6
- Upgraded to Rayturbo 2.35 with Ray Data and Ray dashboard improvements
- Added integration with Liger Kernel.
- Resources: API Reference | Docs | Example Usage
- Added support for different fine-tuning tasks with a new
task
parameter:- Instruction tuning, ignores user messages in the loss
- Classification, predicts only user-defined labels
- Direct Preference Optimization, trains on preference data
- Resources: Docs | Preference tuning end-to-end example | Classification end-to-end example
- General improvements and bug fixes
Version 0.5.5
- Added configurable support for MLflow and W&B logging.
- Resources: API Reference | Docs | W&B Example | MLflow Example